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Neural Response Patterns During Pavlovian-to-
Instrumental Transfer Predict Alcohol Relapse
and Young Adult DrinkingQ1
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ABSTRACT
BACKGROUND: Pavlovian-to-instrumental transfer (PIT) describes the influence of conditioned stimuli on instru-
mental behaviors and is discussed as a key process underlying substance abuse. Here, we tested whether neural
responses during alcohol-related PIT predict future relapse in alcohol-dependent patients and future drinking
behavior in adolescents.
METHODS: Recently detoxified alcohol-dependent patients (n = 52) and young adults without dependence (n = 136)
underwent functional magnetic resonanceQ2 imaging during an alcohol-related PIT paradigm, and their drinking
behavior was assessed in a 12-month follow-up. To predict future drinking behavior from PIT activation patterns,
we used a multivoxel classification scheme based on linear support vector machines.
RESULTS: When training and testing the classification scheme in patients, PIT activation patterns predicted future
relapse with 71.2% accuracy. Feature selection revealed that classification was exclusively based on activation
patterns in medial prefrontal cortex. To probe the generalizability of this functional magnetic resonance imaging–
based prediction of future drinking behavior, we applied the support vector machine classifier that had been
trained on patients to PIT functional magnetic resonance imaging data from adolescents. Strikingly, we found that
those young social drinkers who were classified as abstainers showed a greater reduction in alcohol consumption
at 12-month follow-up than those classified as relapsers (D = 224.4 6 6.0 g vs. 25.7 6 3.6 g; p = .019).
CONCLUSIONS: These results suggest that neural responses during PIT could constitute a generalized prognostic
marker for future drinking behavior in established alcohol use disorder and in at-risk states.

Keywords: Alcohol dependence, Future drinking behavior, Multivoxel classification, Pavlovian-to-instrumental
transfer, Relapse

https://doi.org/10.1016/j.biopsych.2019.06.028

Values of environmental cues can determine human behavior. As
such, pavlovian-to-instrumental transfer (PIT) describes the
observation that pavlovian conditioned stimuli can influence
instrumental behavior (1). In addictive behaviors, drug-related
cues are known to promote craving and drug intake and to facili-
tatedrugdependence (2,3).Here, drug-relatedcuesare thought to
acquire incentive salience by pavlovian conditioning with the
drug-induced reward and then shape instrumental behaviors
characteristic of drug dependence. In line with this idea, current
theories of alcohol dependence (AD) hypothesize PIT to be a core
mechanism of relapse behavior following abstinence (4). Empiri-
cally, this hypothesis is supported by studies in rodents, in which
reinstatement of alcohol drinking after abstinence was provoked
by cues previously associated with alcohol availability (5,6).

Neurobiological studies in humans have shown that alcohol
cues activate both subcortical areas such as the ventral striatum
and cortical areas including the medial prefrontal cortex (mPFC)

(7). Studies investigatingPIT specifically point toward the ventral
striatum, the amygdala, and the mPFC as essential structures
involved in such adaptive behavior (8–11). Based on these
findings, alcohol-related PIT has been suggested to reflect the
dysfunctional regulation of prefrontal-striatal circuits in AD that
interfere with goal-directed decision-making (12).

In the present study, we sought to investigate whether neural
responses during PIT in humans can be used as a mechanistic
biological marker to predict future drinking behavior. We used
functional magnetic resonance imaging (fMRI) and multivoxel
pattern analysis to predict future relapse in 52 detoxified
alcohol-dependent patients (22 relapsers, 30 abstainers) from
PIT-induced brain activation patterns. Multivoxel pattern anal-
ysis utilizes the full information contained in patterns of brain
activity and has been shown to be more sensitive in detecting
differences between clinical populations compared with con-
ventional univariate analysis (13). We hypothesized that a
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multivoxel pattern analysis–based classifier should successfully
discriminate between future relapsers and future abstainers on
the basis of PIT-induced activation patterns.

Importantly, in a next step we assessed whether PIT acti-
vation patterns could serve as an informative marker of future
drinking behavior even in individuals not diagnosed with AD.
To this end, we applied the classifier trained to predict relapse
in patients to an independent sampleQ3 of young social drinkers
(n = 136). This sample includedQ4 young men, a population
known to be susceptible to problematic alcohol-related
drinking behavior (14), who did not fulfill the criteria of AD.
We reasoned that if PIT activation patterns constitute a useful
and generic marker of future drinking behavior, a classifier
trained on these patterns should make reasonable predictions
for changes in drinking behavior even in an unrelated sample of
healthy individuals. To quantify such changes, we focused on
differences in average quantity recorded and frequency of
drinking at baseline and 1-year follow-up.

METHODS AND MATERIALS

Participants

Data were collected at Charité–Universitätsmedizin Berlin and
Universitätsklinikum Dresden/Technische Universität Dresden
as part of the LeAD (Learning and Alcohol Dependence) study
(NCT01679145, NCT01744834). Here, we investigated 2 in-
dependent cohorts of the LeAD study: 1) a sample of recently
detoxified alcohol-dependent patients (Table 1) and 2) a
sample of young male social drinkers without AD diagnosis for
generalization (Table 2). Patients fulfilled dQ5 iagnostic criteria for
AD according to ICD-10 and DSM-IV-TR but displayed no
relevant alcohol withdrawal symptoms at the time of the study
(Clinical Institute Withdrawal Assessment for Alcohol scale

Q6 score#3) (15). The young social drinkers included healthy men
18 years of age who reported regular alcohol intake (at least 2
drinking occasions within the last 3 months). After considering
the exclusion criteria (see Supplement), the final sample con-
sisted of 52 alcohol-dependent patients with 1-year follow-up
relapse information and valid data (10 women; 21–64 years of

age, mean 6 SD 44.61 6 10.40 years of age, mean duration of
AD of 11 years) (see Table 1) who were abstinent from alcohol
by a mean of 20.4 6 11.0 days and young male social drinkers
(n = 136; mean 18.38 6 0.20 years of age, who reported their
last alcoholic drink past a mean of 9.2 6 16.3 days) (see
Table 1). All participants gave written informed consent. Ethical
approval for the study was obtained from both sites, and
procedures complied with the Declaration of Helsinki.

Data Acquisition and Analyses

PIT Task. Participants performed an instrumental task (but-
ton presses to collect shells) while presented in the back-
ground with alcohol or water cues (for a detailed description,
see the Supplement).

Functional MRI. fMRI was performed on a Siemens Trio 3T
scanner Q7(Siemens Healthineers, Erlangen, Germany) with an
echo-planar imaging sequences (repetition time = 2410 ms;
echo time = 25 ms; flip angle = 80�; field of view = 192 3 192
mm2; voxel size = 3 3 3 3 2 mm3) comprising 42 slices
approximately 225� to the bicommissural plane (for pre-
processing procedure and first-level analyses, see the
Supplement). Statistical analysis at the single-subject level
was based on general linear modeling. The model comprised
onset regressors for the different cues Q8(alcohol, water, and 5
monetary value levels) modeled as stick functions, each
associated with parametric regressors for the trial-by-trial
number of button presses (16,17). Trials without button
presses for one of the cue conditions led to the exclusion of
the subjects. To account for motor activity, an additional re-
gressor containing all individual button presses was included.
Regressors of no interest were the realignment parameters,
with derivatives Q9and one regressor for detecting bad slices with
volume-to-volume motion larger than 1 mm (18). The effect of
interest for the present investigation was the alcohol PIT effect,
which was defined as the contrast between the parametric
(number of button presses) modulators of alcohol and water
cues (alcohol . water). Hence, this neural alcohol PIT effect
captures the influence of alcohol-related stimulus values (or

Table 1. Sample Characteristics for the Cohort of Patients

Relapsers (n = 30) Abstainers (n = 22) t, c2
, U Q23p

Age, Years 44.72 6 8.80 44.47 6 12.05 0.09 (50) .93

Female, % 20 18 0.04 (52) .87

Education, Years 13.76 6 2.69 14.81 6 3.03 21.28 (49) .21

Social Status 1.74 6 0.58 1.55 6 0.67 1.02 (45) .31

FTND (Sum) 3.73 6 2.55 3.04 6 2.77 0.91 (50) .37

Years Since Initial AD Diagnosis (DSM-IV) 12.57 6 10.58 8.89 6 9.86 1.17 (46) .25

Inpatient Detoxifications 5.22 6 5.19 2.21 6 2.567 2.28 (44) .03

Severity of Disease (ADS Score) 16.34 6 6.06 12.86 6 6.55 1.94 (50) .06

Amount Alcohol Intake/Occasion Last Year, g 232.80 6 143.18 183.68 6 112.88 1.27 (50) .21

Frequency of Alcohol Intake Last Year 5 6 0 5 6 0 0.67 (50) .51

Values are mean 6 SD or %. Q24

Social status was assessed from a self-rated score of social status affiliation to lower, middle, or upper class. Severity of nicotine dependence
was computed as the sum score of the Fagerström Test for Nicotine Dependence (FTND) (34). To assess the severity of alcohol dependence, we
used the Alcohol Dependence Scale (ADS) (35). Quantity and frequency of alcohol intake were assessed during the Munich-Composite International
Diagnostic Interview Q25with frequency of alcohol intake defined in categories of 0 (abstinent), 1 (less than a once a month), 2 (1–2 days a month), 3 (1–2
days a week), 4 (3–4 days a week), and 5 (almost daily alcohol intake) (36,37).
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conditioned pavlovian stimulus values) on instrumental
response rates. Such alcohol-related “transfer” responses
have been suggested to engage subcortical areas such as the
nucleus accumbens (NAc) (11) as well as cortical areas such as
the anterior cingulate and the mPFC (19). The effect of interest
for the present investigation was the alcohol PIT effect, which
was defined as the contrast between the parametric (number
of button presses) modulators of alcohol and water cues
(alcohol . water). To compare the PIT effect with a more
conventional “cue reactivity” contrast, we additionally
computed the contrast between the nonparametric onset
regressors of alcohol and water cues (alcohol . water).

Relapse Prediction Based on Neural PIT Responses

Our main goal was to test the hypothesis that neural PIT re-
sponses are predictive of future relapse in alcohol-dependent
patients after detoxification. To this aim, we used linear sup-
port vector machine (SVM) (20) with a data-driven estimation of
the cost parameter (21) to classify between future relapsers and
future abstainers on the basis of whole-brain PIT contrast im-
ages. To guarantee independence between training and testing
data within the classification scheme, an outer leave-one-out
(LOO) cross-validation procedure was performed, such that in
each fold, the SVM classifier was trained on all but one partici-
pant and then was tested on the left-out participant. Within this
outer cross-validation loop, a nested inner LOOcross-validation
loop was used to select the optimal number of voxels for

classification (Figure 1). This feature (i.e., voxel) selection stage
was based on a searchlight analysis (22) as follows. The
general search space for the searchlight analysis was defined
on the basis of a large coordinate-based meta-analysis
summarizing brain areas in which alcohol-related stimuli elicit
activation (7). The resulting search space (see Figure 2) con-
sisted of 12 anatomical brain regions Q10(superior frontal prefrontal
gyrus; medial frontal gyrus; precuneus; parahippocampus;
rostral Q11, anterior, posterior, and subgenual cingulate gyri;
caudate; globus pallidus; thalamus; NAc) that were reported by
Schacht et al. (7) and that were derived from the JHU atlas (23).
For each voxel within the search space, the activation pattern
within a sphere around the voxel (radius 4 voxels) was extracted
for all subjects within the training data set (N-1 Q12) of the current
outer cross-validation fold. Next, one additional subject was left
out and an SVM was trained on the remaining subjects (N-2) to
predict relapse on the basis of the activation pattern given by the
sphere surrounding the current voxel. This procedure was loo-
ped over all subjects in the training dataset and voxels within the
search space and then averaged across subjects. As a result,
we obtained—for each outer cross-validation loop—a single
average searchlight accuracy map that could be used to rank
the voxels within the search space. After obtaining a ranking of
voxels, we then determined the optimal number of voxels and
tested the performance of SVM classification (again using
nested LOO cross-validation) while systematically increasing
the number of voxels in steps of 100 voxels up to a maximum of
500 voxels. This procedure yielded an optimal number of voxels
(350 6 96 on average) as defined by the maximum achieved
classification accuracy. In a final step, an SVM classifier was
trained on the activation patterns of the entire training dataset
(N-1), now using the computed optimal number of top-ranked
voxels, and then used to predict relapse in the (outer) left-out
subject (which, importantly, had not been involved at any point
during the feature selection and training stage).

To compare the predictive capacity of alcohol PIT re-
sponses to monetary PIT responses and more conventional
cue reactivity responses, we additionally performed classifi-
cation on the basis of a simple cue reactivity contrast (alcohol
. water) and the monetary PIT contrast, separately (see
Supplement).

In addition to standard classification accuracy, we
measured classification performance with balanced accuracy

Table 2. Sample Characteristics for the Cohort of Young
Social Drinkers

Characteristics Mean 6 SD (n) or %Q26

Age, Years 18.38 6 0.20 (136)

Female, % 0

Education, Years 11.62 6 0.99 (135)

Social Status 2.19 6 0.62 (133)

FTND (Sum) 0.21 6 0.96 (136)

Severity of Disease (ADS score) 4.69 6 4.15 (132)

Amount Alcohol Intake/Occasion Last Year, g 69.42 6 41.98 (136)

Frequency of Alcohol Intake Last Year 2 6 1 (136)

For details of the variables, see Table 1.
ADS, Alcohol Dependence Scale; FTND, Fagerström Test for

Nicotine Dependence.

Figure 1. An illustration of the classification anal-
ysis. The protocol shows both the inner cross-
validation loop for voxel-feature selection (gray
frame) and the outer cross-validation loop (black),
which consists of training a support vector machine
(SVM) algorithm using the optimal number of voxels
used to predict the initially left-out patient. aPIT, ��� Q22.
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(24), which corrects for class imbalance and enables the
computation of meaningful p values.

Predicting Future Drinking Behavior in Young
Adults

To test whether PIT responses constitute mechanistically infor-
mativemarkers of future drinkingbehavior, we evaluatedwhether
a classifier trained to predict relapse in alcohol-dependent pa-
tients makes useful predictions when applied to young social
drinkers. We first trained the SVM classifier on the entire patient
sample at once, whereby the number of voxels was set to the
average number of optimal voxels from the original cross-
validation procedure (350 voxels). The trained classifier was
then applied to the 136 imaging datasets of the young social
drinkers, assigning abstainer-classified and relapser-classified
labels to each individual based on their PIT activation patterns.
We then compared changes in drinking behavior (amount and
frequency) over a 12-month period between young social
drinkers classified as abstainers and classified as relapsers.

RESULTS

PIT Activation Patterns in the mPFC Predict
Relapse

Our main research question concerned the prediction of future
relapse in alcohol-dependent patients from neural PIT re-
sponses. Using a LOO cross-validation procedure in combi-
nation with nested feature selection, our classification scheme
yielded 71.15% correct predictions (sensitivity = 83.33%;

specificity = 54.55%; balanced accuracy = 68.9%; p = .002).
Thus, as hypothesized, neural activation patterns underlying
PIT successfully predicted future relapse.

To investigate which voxels contributed most to classifica-
tion, we assessed how often each voxel was selected in the
feature selection stage. Figure 2 shows the number of times
each voxel had been selected (red-yellow-white color scale)
overlaid on the literature-based search space (blue). We found
that selected voxels constituted a confined cluster located in
the mPFC (centered around Montreal Neurological Institute Q13

coordinates [4, 52, 20] within Brodmann areas 10 and 32). The
prediction of relapse was therefore almost exclusively based
on activation patterns in the mPFC during alcohol-related PIT,
a region known to be involved in cognitive control. Other brain
regions within our selected search space that have been pre-
viously implicated in the alcohol-related PIT effect, such as the
NAc, have not been picked up by the feature selection stage
and thus did not contribute to the relapse prediction.

To assess whether relapse prediction would work just as
well on a more conventional cue reactivity contrast, we applied
an identical classification scheme to cue reactivity contrast
maps (alcohol . water). The accuracy was 53.9% (sensitivity =
56.7%; specificity = 50.0%; balanced accuracy = 53.3%),
which was not above chance (p = .32). Thus, a simple cue
reactivity contrast was not sufficient to predict relapse in
alcohol-dependent patients, justifying the use of more elabo-
rate PIT effects. To investigate whether successful relapse
prediction is based on a general neurobiological mechanism
underlying PIT, we repeated our analysis using monetary
instead of alcohol-related fMRI PIT responses. Interestingly,
while the overall accuracy for this model was considerably

Figure 2. Searchlight-based feature selection.
The blue area shows the overall search space based
on a literature-informed region of interest for general
cue reactivity responses (7). Voxels are colored ac-
cording to how often they were selected for classi-
fication (up to a maximum of 52 corresponding to the
number of cross-validation folds).
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lower, at 55.77%, and not significantly above chance perfor-
mance (p = .26, sensitivity = 63.33%; specificity = 45.45%,
balanced accuracy = 54.39%), we found that the voxels
selected for classification showed a substantial overlap with
the voxels selected for alcohol PIT analysis (see Supplement
and Supplemental Figure S3).

Generalization to Changes in Drinking Behavior in
Young Social Drinkers

We reasoned that if the PIT response patterns constituted a
generic marker for the risk of future problematic drinking be-
haviors, they should predict longitudinal changes in drinking
behavior in other samples as well. To test this hypothesis, we
applied the SVM classifier trained on PIT activation patterns of
alcohol-dependent patients to make predictions regarding
future drinking behavior in an independent sample of young
social drinkers. Overall, the amount of alcohol consumption
per occasion in this cohort of young social drinkers decreased
between a baseline measurement (also the time of fMRI) and
a 12-month-follow up (mean 6 SEM: baseline 69.4 6 3.6 g,
12-month follow up 61.4 6 4.2 g; t109 = 22.9, p = .004),
although the frequency of consumption did not change
(median 6 absolute deviation: baseline 2 6 1 (1–3 per month);
12-month follow-up 3 6 1 (4–8 per month); Wilcoxon signed
ranks [Z111 = 1.441, p = .149]). On the basis of this, we expected
that young social drinkers labeled as abstainer-classified by
the classification scheme would show stronger reductions in
drinking behavior (amount of alcohol consumption per occa-
sion) compared with those labeled as relapser-classified.

Indeed, young social drinkers classified as abstainers
showed a reduction in the amount of alcohol consumed be-
tween baseline and 12-month follow-up (D = 224.4 6 6.0 g;
t21 = 4.0, p , .001), while no significant reduction was
observed in those classified as relapsers (D = 25.7 6 3.6 g;
t87 = 1.6, p = .12) (Figure 3). This difference was itself signifi-
cant (t108 = 2.4, p = .019). By contrast, no difference between
these groups was observed with respect to changes in the
frequency of alcohol consumption (Mann-Whitney U = 0.275
p = .783).

Taken together, our classification scheme trained to predict
future relapse in alcohol-dependent patients made a mean-
ingful prediction for changes in drinking behavior of young
social drinkers, labeling as abstainer-classified those who
showed improvedQ14 future drinking behavior.

DISCUSSION

We investigated the hypothesis that neural responses during
PIT predict future relapse behavior in detoxified alcohol-
dependent patients. Applying a machine learning classifier to
PIT-induced brain activation patterns from fMRI, we showed
that 83.3% of future relapsers and 54.5% of future abstainers
could be correctly classified, corresponding to an overall ac-
curacy of 71.12%. Moreover, we found that this classification
scheme generalized to an independent sample of young social
drinkers, in whom those labeled as abstainer-classified
showed improved future drinking behavior compared with
those labeled as relapser-classified. Together, these results
provide evidence that the influence of alcohol-related cues on
instrumental behavior is a promising candidate mechanism for

the persistence and development of problematic drinking
behaviors.

An inspection of the searchlight-based feature selection
procedure revealed that the voxels most consistently selected
for classification clustered in the mPFC. Interestingly, also in a
complementary analysis for monetary PIT, the mPFC was
identified as predictive for relapse, although overall classifi-
cation accuracy was not significantly above chance. These
findings are in line with previous studies reporting a relation-
ship between relapse status and alcohol cue–related activity in
the mPFC (3,7,25). Mechanistically, recent studies investi-
gating decision making in the context of AD have implicated
the mPFC in goal-directed behavioral control and found
consistent reduced activation related to goal-directed behavior
in the mPFC of alcohol use disorder patients (26,27). Moreover,
the mPFC plays an important role in integrating cognitive-
affective information and sends highly organized projections
to subcortical sites including the NAc shell. Preclinical studies
suggest an important role of these projections in alcohol-
seeking behavior. For instance, ablation of mPFC neurons
projecting to NAc block cue-induced reinstatement of alcohol
seeking (28), and inactivation of the NAc shell decreases the
extent to which alcohol-predictive cues control instrumental
behavior (29). Beyond mediating alcohol reinstatement, mPFC-
NAc projections also play a major role in PIT. In rats, the
interaction between NAc shell and infralimbic PFC mediates
PIT effects (30). Importantly, PIT effects (and their neural cor-
relates in the NAc) are increased after chronic Q15drug intake in
animals (31) and humans (10), demonstrating the importance of
this mechanism in drug addiction.

Because our classification scheme was based on alcohol-
related PIT, it is tempting to conclude that dysfunction in
areas such as the mPFC may result in the formation of cue-
triggered craving, thus facilitating the loss of control upon
alcohol intake. On the other hand, the spatial overlap with
predictive voxels underlying monetary PIT classification, albeit
in itself not statistically significant, furthermore also suggests
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Figure 3. Changes in drinking behavior depending on whether young
social drinkers were labeled as abstainer-classified or relapser-classified.
Change in the amount (g) of alcohol intake per occasion within the follow-
up period of 12 months.
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that the mPFC may reflect a more general process relevant for
relapse. One might speculate that this might be mediated via a
relaxing control over subcortical mechanism or dysfunction in
other cognitive mechanisms associated with the mPFC, such
as emotion and motivational regulation as well as reward cir-
cuitry (4,26,32). However, because within our study we could
not provide evidence for behavioral differences indicative of a
more general control dysfunction in relapsers, this interpreta-
tion warrants further investigation.

In contrast to the successful classification based on PIT,
neural responses reflecting cue reactivity were not sufficient to
make meaningful predictions about future relapse behavior.
This result suggests that instead of neural responses to
alcohol-related cues per se, it is specifically the neural
response underlying the transfer to instrumental behavior that
is related to relapse probability. Thus, apart from providing a
promising neuroimaging-based biomarker for relapse predic-
tion, our results also shed light on the mechanism underlying
susceptibility to relapse.

Importantly, the claim that PIT-induced neural activation
patterns represent a mechanistically valid marker was corrob-
orated by our finding that the same classifier trained on the
patient sample made meaningful predictions about changes in
drinking behavior in an independent sample of young social
drinkers. Specifically, the algorithm was able to distinguish be-
tween young adults who would and those who would not
significantly reduce the quantity of future alcohol consumption.
In contrast, changes in the frequency of alcohol consumption
were not different between those labeled as abstainer-classified
and those labeled as relapser-classified. Indeed, it may be un-
reasonable to expect that the number of opportunities for
alcohol consumption changesmuch within a period of 1 year. In
addition, the development of addiction is thought to involve
stimuli paired with drug effects, becoming occasion settersQ16 (33).
Such stimuli increase motivation for drug taking, so that
occasion-dependent drug taking becomes probable. Thus, PIT-
specific mPFC activation patterns may reflect cue-related loss
of control rather than cue-independent alcohol-seeking
behavior, as reflected by frequency of alcohol intake.

Overall, our work demonstrates that neural PIT responses
can serve as a mechanistic marker for relapse susceptibility
in alcohol-dependent patients and for changes in drinking
behavior in healthy young individuals. Our findings highlight
the mPFC as a key brain region explaining the differences in
instrumental behaviors of relapsers and young adults at risk.
Specifically, activation patterns in the mPFC may encode the
effect of alcohol-related cues on goal-directed behaviors such
as losing control over alcohol consumption. In short, our
findings endorse neural responses during PIT both as a
mechanism-based predictive marker for future drinking
behavior in established AD, and in the developmentQ17 of prob-
lematic drinking in at-risk states.
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