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ABSTRACT
BACKGROUND: Addiction is supposedly characterized by a shift from goal-directed to habitual decision making,
thus facilitating automatic drug intake. The two-step task allows distinguishing between these mechanisms by
computationally modeling goal-directed and habitual behavior as model-based and model-free control. In addicted
patients, decision making may also strongly depend upon drug-associated expectations. Therefore, we
investigated model-based versus model-free decision making and its neural correlates as well as alcohol
expectancies in alcohol-dependent patients and healthy controls and assessed treatment outcome in patients.
METHODS: Ninety detoxified, medication-free, alcohol-dependent patients and 96 age- and gender-matched control
subjects underwent functional magnetic resonance imaging during the two-step task. Alcohol expectancies were
measured with the Alcohol Expectancy Questionnaire. Over a follow-up period of 48 weeks, 37 patients remained
abstinent and 53 patients relapsed as indicated by the Alcohol Timeline Followback method.
RESULTS: Patients who relapsed displayed reduced medial prefrontal cortex activation during model-based decision
making. Furthermore, high alcohol expectancies were associated with low model-based control in relapsers, while the
opposite was observed in abstainers and healthy control subjects. However, reduced model-based control per se
was not associated with subsequent relapse.
CONCLUSIONS: These findings suggest that poor treatment outcome in alcohol dependence does not simply result
from a shift from model-based to model-free control but is instead dependent on the interaction between high drug
expectancies and low model-based decision making. Reduced model-based medial prefrontal cortex signatures in
those who relapse point to a neural correlate of relapse risk. These observations suggest that therapeutic
interventions should target subjective alcohol expectancies.

Keywords: Alcohol dependence, Alcohol expectancy, Goal-directed control, Medial prefrontal cortex, Reinforcement
learning, Treatment outcome
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A prominent theory in addiction research suggests that
drug consumption is initially goal directed, aiming at drug-
associated positive effects, then becomes habitual and even-
tually compulsive (1,2). This shift from goal-directed to habitual
control has been suggested to be caused by long-lasting drug-
associated changes in the medial prefrontal cortex (mPFC) and
the ventral striatum (VS), which are involved in reward pro-
cessing and reinforcement learning (3–5).

Behaviorally, there is good evidence for reduced goal-
directed decision making facilitating habitual behavior in
humans with substance use disorders (6), including metham-
phetamine (7), cocaine (8), and alcohol dependence (AD)
[(9,10), but see (7)]. Overreliance on habits at the expense of
goals in AD may be particularly pivotal during early abstinence,
N: 0006-3223
where patients are required to inhibit automatic patterns of
alcohol intake and to develop alternative coping strategies
(11,12). Neuroimaging studies implicate a crucial role for the
mPFC and the VS for the balance between goal-directed and
habitual control (13–17), craving (18), and relapse in AD
(19–21). Moreover, in animals, there is evidence that habits
(e.g., automatic action tendencies) precede relapse-like
behavior (22–24).

However, habit formation is not only a deficit: it is a
fundamental and adaptive ability, and using habits facilitates
decision making whenever cognitive resources are limited (25)
or action sequences are too complex to mentally compute
them (26). In AD, specific habits may be altered and induce
alcohol craving, seeking, and intake. Besides habit formation,
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positive alcohol expectancies as assessed by the Alcohol
Expectancy Questionnaire (AEQ) (27) have been associated
with current (28) and future (29,30) alcohol consumption.
Explicit, self-report measures of alcohol expectancies reflect
the specific expectations of the reinforcing effects of alcohol
and are associated with prefrontal cortex activity and structure
(31–35). One study in humans has demonstrated that acute
expectation of alcohol induced by presenting alcohol bever-
ages impairs goal-directed regulation of drug-seeking behavior
in social drinkers (36), which parallels animal findings (37).
Such acute expectation of alcohol may be particularly strong in
subjects who have generally positive expectancies regarding
the effects of alcohol consumption. Indeed, subjects who
report greater positive, arousing, and social alcohol expec-
tancies show increased appetitive responses toward alcohol
cues (38). However, it is yet unclear how this association
relates to real-life drinking behavior and treatment outcome
in AD.

We recruited recently detoxified alcohol-dependent patients
who expressed a desire to remain abstinent. We asked
whether a tendency for positive alcohol expectancies interacts
with model-based control and its neurobiological correlates in
predicting treatment outcome.

METHODS AND MATERIALS

Participants

All data were collected as part of the Learning and Alcohol
Dependence study, a bicentric German study hosted at Uni-
versitätsklinikum Dresden/Technische Universität Dresden and
Charité–Universitätsmedizin Berlin. Two hundred two subjects
(106 alcohol-dependent patients, 96 healthy control subjects
[HCs]) completed the two-step task (39) to disentangle habitual
from goal-directed decision making and the brief German
version of the AEQ (27). Patients fulfilled diagnostic criteria for
AD according to ICD-10 and DSM-IV-TR (40) for a minimum of
3 years. HCs were carefully matched for age, gender, educa-
tion, and smoking. Exclusion criteria for all subjects were left-
handedness [Edinburgh Handedness Inventory ,50 (41)], a
history of current or past substance use disorder (except
nicotine dependence in HCs and alcohol and nicotine depen-
dence in patients), other major psychiatric disorder [as
assessed with the computer-based Composite International
Diagnostic Interview (42,43)], or neurological disease. No
subjects were using psychotropic medications that were
known to interact with the central nervous system for at least
four half-lives (including illegal drugs and detoxification treat-
ment tested by a drug urine test). Study participation of the
patients took place shortly after detoxification (Table 1). Par-
ticipants gave written informed consent. Ethical approval for
the study was obtained from both sites (Universitätsklinikum
Dresden/Technische Universität Dresden, EK 228072012;
Charité–Universitätsmedizin Berlin, EA 1/157/11), and pro-
cedures were in accordance with the Declaration of Helsinki.

Procedure

Participants were seen twice for investigation. In the first
assessment, participants completed the Composite Interna-
tional Diagnostic Interview, a neuropsychological test battery,
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and additional questionnaires (Table 1). Subjects completed
the German version of the AEQ at this time (27). On the second
appointment, which took place shortly after the first appoint-
ment (mean 6 SD, 7.0 6 12.2 days), subjects performed the
two-step task (39) along with another learning task (44). The
two-step task was programmed using MATLAB software (The
MathWorks, Inc., Natick, MA) with the Psychophysics Toolbox
(45) and was performed while undergoing functional magnetic
resonance imaging (fMRI) scanning. All participants had
negative alcohol breath tests and patients were free of signif-
icant withdrawal symptoms [Clinical Institute Withdrawal
Assessment of Alcohol Scale, Revised score #3 (46)]. Partic-
ipants received compensation of 10V an hour plus a financial
bonus contingent on their performance. Blood samples for
analysis of alanine transaminase, aspartate transaminase,
gamma-glutamyl transferase, and phosphatidylethanol were
collected.

Alcohol Expectancy Questionnaire

The brief German version of the AEQ includes 19 items. Each
item describes anticipated reinforcing effects of alcohol. Items
include statements such as “Alcohol generally has powerful
positive effects on people (e.g., makes a person feel good or
happy)” or “Alcohol helps a person to relax (e.g., feel less
tense, can keep a person’s mind off of mistakes at work).”

Subjects are asked to agree or disagree with each item.
Disagreement and agreement of each item are coded as
1 and 2, respectively, resulting in a potential sum score
between 19 and 38, for low to high expected reinforcement,
respectively.

Task

Each participant performed 201 trials of the two-step task
(Figure 1A for detailed task description). This task enables the
analysis of model-based (goal-directed) and model-free
(habitual) decisions on a trial-by-trial level, because both
decision strategies make distinct predictions on choice
behavior (Figure 1B).

Magnetic Resonance Imaging

fMRI was performed using a 3T Siemens Trio scanner
(Siemens, Erlangen, Germany) with a 12-channel head coil. For
fMRI, we used a T2-weighted echo planar imaging sequence
with the following parameters: repetition time = 2410 ms, echo
time = 25 ms, 80� flip angle, 3 3 3 3 2 mm3 voxel size, and a
192 3 192 mm2

field of view. One volume comprised 42
transverse slices in descending order, oriented 25� to the
anteroposterior commissure line. We additionally acquired a
structural T1-weighted magnetization-prepared rapid gradient
echo image (repetition time = 1900 ms, echo time = 2.26 ms,
9� flip angle, 1 3 1 3 1 mm3 voxel size, 256 3 256 mm2

field
of view).

Follow-up Procedure

After study participation, alcohol-dependent patients were
regularly contacted for personal (after 4, 8, 12, 24, and 48
weeks) and telephone (after 6, 10, 18, and 36 weeks) assess-
ments over a period of 1 year. At each contact, we assessed
daily alcohol intake amount using the Alcohol Timeline
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Table 1. Sample Characteristics of the Final Sample

Variable

Group p Values for Test Statistic

HCs (n = 96) Abstainers (n = 37) Relapsers (n = 53)

Main
Effect
Group

HCs
vs.

Abstainers

Abstainers
vs.

Relapsers

HCs
vs.

Relapsers

Gender Female: 16; male: 80 Female: 7; male: 30 Female: 6; male: 47 .56c .8c .37c .47c

Site Berlin: 56; Dresden: 40 Berlin: 24; Dresden: 13 Berlin: 28; Dresden: 25 .52c .56c .28c .61c

Mean (SD) NA Mean (SD) NA Mean (SD) NA F t t t

Demographic Variables

Education, years 11.9 (1.5) 2 10.8 (1.5) 2 10.6 (3.5) 2 ,.05a,d .2d .61d ,.05a,d

Age, years 43.6 (10.9) 0 45.7 (12.0) 0 45.2 (9.9) 0 .52b .36b .82b .38b

Income, V 1201 (686) 22 1150 (741) 0 1013 (621) 5 .22d .61d .38d .08d

Smokers, % 65 0 75 0 75 0 .33c .45c 1.0c .45c

Duration of abstinence
at fMRI, days

66.5 (280.9) 0 21.4 (11.6) 0 22.3 (12.4) 0 ,.0001a,d ,.0001a,d .80d ,.0001a,d

Clinical Characteristicse

No. of detoxifications — — 2.13 (2.06) 0 4.75 (5.03) 0 ,.05a,d — ,.05a —

Positive alcohol
expectancies

25.7 (4.6) 0 31.7 (4.4) 0 32.8 (3.9) 0 ,.0001a,d ,.0001a,d .20d ,.0001a,d

Depressive symptoms 1.9 (2.3) 1 3.9 (3.9) 0 4.2 (3.7) 0 ,.0001a,d ,.001a,d .67d ,.0001a,d

Craving 2.7 (2.8) 1 10.3 (8.2) 1 12.9 (8.4) 3 ,.0001a,d ,.0001a,d .10d ,.0001a,d

Drinking motives 29 (7) 3 44 (11) 1 48 (14) 1 ,.0001a,d ,.0001a,d .36d ,.0001a,d

Time to relapse, days — — — — 87.1 (80.0) 4 — — — —

Neuropsychological Testing

Verbal IQ 28.3 (4.6) 3 28.6 (4.3) 0 28.2 (4.8) 1 .90d .87d .73d .96d

Fluid IQ 10.7 (3.12) 0 9.9 (2.6) 1 9.1 (2.9) 0 ,.01a,b .11b .26b ,.01a,b

Working memory 7.5 (2.04) 0 6.62 (1.91) 0 6.54 (1.89) 0 ,.01a,b ,.05a,b .86b ,.01a,b

Blood Markers

AST (mKat/L) 0.45 (0.17) 28 0.69 (0.53) 5 0.71 (0.52) 11 ,.001a,d ,.05a,d .68d ,.001a,d

ALT (mKat/L) 0.43 (0.19) 28 0.88 (0.73) 5 1.08 (2.16) 11 ,.001a,d ,.01a,d .94d ,.001a,d

g-GT (mKat/L) 0.54 (0.67) 28 3.33 (6.71) 5 1.51 (1.38) 11 ,.0001a,d ,.0001a,d .91d ,.0001a,d

PEth (ng/mL) 203.24 (359.68) 16 447.85 (349.13) 16 806.15 (736.83) 31 ,.0001a,d ,.0001a,d .14d ,.0001a,d

ALT, alanine transaminase; AST, aspartate transaminase; fMRI, functional magnetic resonance imaging; g-GT, gamma-glutamyl transferase;
HC, healthy control subjects; NA, not available; PEth, phosphatidylethanol.

aSignificant difference.
bp value of linear model with group as predictor, or p value of respective contrast.
cp value of chi-square test.
dp value of Kruskal–Wallis rank sum test with group as predictor or Wilcoxon rank sum test for respective contrast.
eDetermined as follows: positive alcohol expectancies: German version of the Alcohol Expectancy Questionnaire (71); depressive symptoms:

Hospital Anxiety and Depression Scale, Subscale Depressive Symptoms (72); craving: Obsessive-Compulsive Drinking Scale (73); drinking
motives were assessed using the Drinking Motives Questionnaire, revised version (52); neuropsychological testing: verbal IQ: Mehrfachwahl
Wortschatz Test (74); fluid IQ: Digit Symbol Substitution Test (75); working memory: digit span backwards test from the Wechsler Adult
Intelligence Scale (76).
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Followback method (47), with relapse defined as consumption
of 60/48 g (male/female) of alcohol on any occasion. Personal
assessment included alcohol breath tests to validate self-
reports. During the follow-up period, we lost 16 patients
(15%). In two cases, we only had relapse reports from close
relatives, which we accepted for classification. Altogether, 53
patients (59%) relapsed during the follow-up period, whereas
37 (41%) remained abstinent. Demographic and clinical char-
acteristics of this sample are shown in Table 1.

Data Analysis

We investigated two questions: 1) whether the balance
between model-free and model-based control was different
between HCs and detoxified alcohol-dependent patients who
B

remained abstinent (abstainers) and who subsequently
relapsed (relapsers), and 2) whether the balance between
model-free and model-based control moderated the effect of
alcohol expectancies on drinking behavior. As previous studies
have overwhelmingly suggested that the two-step task has
power to detect variations in the goal-directed but not the
habitual system (7,9,48,49), we focused on individual differ-
ences in model-based control in all analyses. We tested as-
sumptions for all statistical analyses and computed
nonparametric tests when necessary.

Task-Related Group Differences

To derive individual measurements of model-based control
from behavior of the two-step task, we focused on first-stage
iological Psychiatry - -, 2017; -:-–- www.sobp.org/journal 3
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Figure 1. (A) An exemplary trial sequence of the two-step task. Each trial consists of two consecutive stages: participants first had to choose one of two
stimuli on a gray background. This selection then led to one of two colored second-stage options (either green or yellow). Again, subjects had to choose one
stimulus over the other. The transition from first-stage selections to the specific second stage was probabilistic: whereas one first stage option led frequently to
the green second-stage options (70%) but rarely to the yellow second-stage options (30%), the other first-stage choice was associated with frequent yellow
second-stage but rare green second-stage visits. Transition frequencies were explicitly taught during the training session with a different stimulus set. After
second-stage selection, participants were probabilistically rewarded with 0.20V or did not receive any monetary reward (0.20V superimposed by a red X).
These second-stage reward probabilities changed slowly according to Gaussian random walks with reflecting boundaries at 0.25 and 0.75 (39). In each stage,
participants had 2 seconds to perform their response. Before starting the task, participants completed a training session with a different stimulus set.
(B) Expected model-free and model-based response patterns. In pure model-free decisions, first-stage choices are repeated whenever their previous choice
led to a rewarded outcome, whereas they are not repeated whenever their previous selection did not result in reward. Thus, model-free first-stage decisions are
a mere function of reward from the previous trial. Contrary to this, model-based decisions take transition frequencies from first to second stage into account.
For instance, in a rare trial, when a first-stage selection unexpectedly leads to a certain second-stage option and this second-stage choice then leads to
reward, the best (model-based) solution to get to this rewarded second-stage choice again is to switch to the opposing first-stage choice in the next trial.
(C) Real response pattern as a function of group. All three groups showed a mixture of model-free and model-based decision making. Groups did not differ
significantly regarding their model-free or model-based choice pattern.
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choices because model-free versus model-based decision
making is differentially affected by reward and transition from
the previous trial (39) (Figure 1B). We calculated individual
model-based scores, as done previously (9), which reflect the
interaction between transition frequency and reward of the
previous trial (% reward common 1 % unrewarded rare – %
rewarded rare – % unrewarded common). Model 1A involved a
multinomial logistic regression analysis (multinom function
from the nnet package [version 7.3-8] in R software [available
at https://www.R-project.org]) to test whether group (dummy
coded with three levels: HCs, abstainers, and relapsers) was
predicted from model-based scores.

The raw data analysis provides a direct measurement of
model-free and model-based behavior. However, it only con-
siders trial-by-trial repetition effects. Computational models
allow more comprehensive assessments, examining longer
behavioral trends. Therefore, we fitted a hybrid model as
4 Biological Psychiatry - -, 2017; -:-–- www.sobp.org/journal
previously described (39,50,51) to the behavior and estimated
parameters for each subject. We used an expectation maxi-
mization algorithm to find maximum a posteriori estimates.
During the fitting procedure, all subjects (HCs, abstainers,
relapsers) were treated as one group.

The hybrid model contains seven parameters, of which the
parameter u is of major interest because it determines the
balance between model-free (u = 0) and model-based (u = 1)
control.

Crucially, this seven-parameter hybrid model was the best-
fitting model for all groups (Supplemental Figure S1).
The estimation of the parameter u relies on the fact that
subjects concurrently use model-free and model-based stra-
tegies. We excluded subjects who did not use this hybrid
model as indicated by the individual log-likelihoods that did not
fit better than chance (Supplement; n in analyses = 143). Model
1B then mirrored the analysis of the first-step repetition
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probabilities: again, we performed a multinomial logistic
regression analysis to test whether u was predictive of group
membership (HCs, abstainers, and relapsers).

In line with Voon et al. (7), we compared all other model
parameters between groups (Supplemental Table S1).

Interaction Between Alcohol Expectancies and
Model-Based Control

Our second hypothesis was that model-based scores would
moderate the effect of alcohol expectancies on group. Model
2A tested this using multinomial logistic regression where we
additionally allowed for interaction between AEQ scores and
model-based control to predict group.

To elucidate the direction of our effects, we computed post
hoc Spearman correlations between AEQ scores and model-
based control within all groups. For illustrative purposes and
further analyses, we assigned participants to high versus low
alcohol expectancy groups using median splits of the AEQ
(HCs median = 25; ADs median = 35).

We compared models 1A and 2A with respect to model fit.
To assess the predictive capacity of the winning model, we
additionally performed a cross-validation approach (stratified
10-fold cross-validation with class balancing during training).

Finally, model 2B replicated the above analysis using the
computational parameter u. We compensated for the reduced
power caused by the removal of poorly fit subjects
(Supplement) by using categorical AEQ information. Again, we
compared models 1B and 2B with respect to model fit. Post
hoc analyses were performed, comparing u between in-
dividuals with high and low alcohol expectancies within each
group using Kruskal–Wallis tests.

To evaluate whether AEQ scores were related to a motiva-
tional aspect of alcohol intake, we correlated AEQ scores with
sum scores of the Drinking Motives Questionnaire (52), which
measures motives of alcohol intake (53).

fMRI Analysis

Preprocessing details of the fMRI data can be found in the
Supplement. All first-level analyses were based on 116 sub-
jects (60 HCs, 21 abstainers, and 35 relapsers; see
Supplemental Figure S2 for dropout details). In line with the
hypothesis that relapse in AD is characterized by a shift away
from model-based control, the aim of the statistical analysis of
the fMRI data was to elucidate whether relapsers would show
decreased model-based neural signatures in brain areas
associated with the computation of these learning signals
(39,50,51).

First-level analyses were conducted as previously
described (39,50,51) (Supplement). Briefly, we derived in-
dividual model-free reward-prediction error (RPEMF) and
model-based reward-prediction error (RPEMB) trajectories
from the computational model under the assumption of
pure model-free (u = 0) versus full model-based control
(u = 1), respectively. In line with Daw et al. (39), we used
means across all groups for all parameters to compute
prediction errors.

Next, we used RPEMF as a parametric regressor in the first-
level analyses and added a second regressor—RPEDMB, the
difference between RPEMF and RPEMB—to explain variance in
B

the blood oxygen level–dependent signal uniquely related to
model-based prediction errors.

At the second level, contrast images for RPEMF and
RPEDMB were taken to a random effects analysis. Site
(Berlin vs. Dresden) was added as a covariate of no interest.
For correction of multiple comparisons, familywise error
(FWE) correction with p = .05 at the peak level was applied
for whole brain analyses. Group comparisons in the mPFC
and the VS—both areas with a pivotal role in coding RPEMF

and RPEDMB signals (39,50,51,54,55)—were performed us-
ing small volume correction (SVC) with a mask containing
all voxels showing a significant effect for RPEMF and
RPEDMB (conjunction at p , .001 uncorrected) combining all
three groups.

There is evidence for pronounced structural alterations in
relapsers compared to abstainers in the mPFC, a region of
interest (20,21,56). We conducted voxel-based morphometry
(57) and added gray matter density as a nuisance variable in
our fMRI analysis to control for morphometric alterations in the
fMRI analyses (Supplemental Table S2).

To mirror the behavioral analyses, we additionally tested
whether model-based neural signatures would differently
correlate with AEQ scores between groups. As we had
assumed that the interaction between model-based neural
correlates and alcohol expectancies plays a role in the pre-
defined regions (right/left VS and mPFC), we extracted average
model-based cluster activity of these regions. Mirroring our
behavioral analyses, we performed three subsequent multi-
nomial regressions with group as dependent variable and
tested for the interaction between AEQ scores and the
respective cluster values.

RESULTS

Sample Characteristics

Compared to HCs, abstainers and relapsers reported signifi-
cantly higher symptoms in almost all clinical characteristics,
increased deficits in neuropsychological testing, and increased
blood parameters related to alcohol consumption (Table 1).

Matching of HCs and alcohol-dependent patients was
successful in all variables of interest (gender, school educa-
tion, smoking status, and age). At baseline, there were no
significant differences between abstainers and relapsers,
except that the patients in the relapse group reported a larger
number of previous detoxifications.

Task-Related Group Differences

Model-based control per se did not predict group membership
of HCs, abstainers, or relapsers (model 1A; R2

McF = .003,
p = .55) (Figure 1C). The computational analysis confirmed
these results. The parameter u was not associated with group
(model 1B; R2

McF = .003, p = .60) (Supplemental Table S1).

Interaction Between Alcohol Expectancies and
Model-Based Control

However, model-based control and alcohol expectancies
interacted in predicting group membership (model 2A; R2

McF =
.23, p = .01). This interaction was significantly different
between relapsers and HCs (p , .01) and trendwise different
iological Psychiatry - -, 2017; -:-–- www.sobp.org/journal 5
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Figure 2. (A, B) Model-based strategy usage as a function of alcohol expectancies. Subsequent relapsers showed a negative relationship between alcohol
expectancies and model-based control. This negative association was not apparent in the abstaining patients and positive in the healthy control subjects. (C)
The relationship between u, which indicates the balance between model-based and model-free decision making, and positive alcohol expectancies. Again,
whereas healthy control subjects showed a positive association between u and alcohol expectancies, this association was negative in relapsers and absent in
abstaining patients.
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between relapsers and abstainers (p = .06). Post hoc analyses
using Spearman correlation to associate AEQ scores with
model-based control indicated a positive association in HCs
(r = .2, p = .04) which was absent in abstainers (p = .36,
Figure 2A) and negative in relapsers (r = 2.3, p = .03). Model
comparisons between models 1A and 2A indicated that model
2A, which included the interaction between the model-based
term and AEQ scores to predict group membership, out-
performed model 1A, which included only the model-based
term (c2 = 87.1, p , .001). To ensure the robustness of our
analysis in a predictive classification scheme, we ran the lo-
gistic regression model in a cross-validated procedure. The
regression model correctly predicted group membership with
an area under the curve of 0.77 (chance level: 0.5; p , 1024

based on a permutation test with 10,000 label permutations),
corroborating the significant predictive capacity of model 2A.

Similar to our raw data analysis, model 2B indicated a sig-
nificant interaction between u and AEQ scores (R2

McF = .12,
p = .01), which was significantly different between relapsers
and HCs (b = 1.48, p , .01) and did not reach significance
between relapsers and abstainers (b = 1.8, p = .1). Again,
model 2B outperformed model 1B, which only included the
parameter u (c2 = 10.2, p = .03).

Post hoc analyses comparing high and low AEQ individuals
revealed a positive association between AEQ scores and u in
HCs (p , .01), but no significant association between AEQ and
u in abstainers (p = .51) and a trend toward negative associ-
ation between AEQ and u in relapsers (p = .05, Figure 2C).
Adding site as a potential covariate did not change any of
these results. Repeating our analyses with time to relapse as
dependent variable did not reach significance (Supplement).

Among all subjects, AEQ scores were positively corre-
lated with a variety of drinking motives (Supplemental
Figures S3 and S4).
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fMRI Results

Across all groups and in line with previous work (39,50,51), the
conjunction between RPEMF and RPEDMB reached significance
in the bilateral VS (t = 6.38, x = 12, y = 12, z = –8 and t = 6.27,
x = –16, y = 8, z = –10, pFWE , .001) and the mPFC (t = 4.85,
x = –8, y = 32, z = –8, pFWE , .05) (Figure 3A; Supplemental
Table S3). Within these regions, we found a significant corre-
lation between neural model-based signatures (average cluster
activation) and model-based scores in HCs (right VS: r = .29,
p = .02; mPFC: r = .27, p = .03) (Figure 3B).

With regard to group comparisons, HCs did not differ from
alcohol-dependent patients. However, with regard to treatment
outcome, we observed significantly lower model-based pre-
diction error signals (RPEDMB) in the mPFC for relapsers
compared to abstainers and HCs (t = 3.9; x = –16, y = 42, z =
–8, pFWE_SVC = .026) (Figure 3C). Post hoc analyses, for which
we extracted estimates from the peak voxel in the mPFC and
compared activation between groups, indicated significantly
higher activation in HCs compared to relapsers (t = 3.47, p ,

.001) and trendwise higher activation in HCs compared to
abstainers (t = 1.74, p = .08). Abstainers and relapsers did not
differ (p = .10). Crucially, adding individual gray matter den-
sities of the mPFC did not change these results (pFWE_SVC =
.024), suggesting that reduced neural signatures of model-
based RPEs in relapsers were not caused by gray matter at-
rophy (Supplemental Table S2).

Model-free neural signatures did not differ between groups
(Supplemental Figure S5).

Mirroring our behavioral analyses, we also examined
whether AEQ scores interacted with neural correlates of
model-based control in predicting group. However, the inter-
action between neural correlates of model-based control and
AEQ scores was not significantly different between groups,
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Figure 3. (A) Conjunction. Across all three
groups, we found a significant coding of model-free
prediction errors and additional model-based pre-
diction errors in the ventral striatum (VS) and the
medial prefrontal cortex (mPFC) (conjunction dis-
played at p , .0001 uncorrected). These regions
were also the only ones that reached significance at
a more conservative threshold (familywise error–
corrected p , .05). (B) Association between neural
and behavioral model-based effects. (C) Group
effects. A region of the mPFC showed reduced
model-based signatures for relapsers compared to
abstainers and healthy control subjects. This effect
survived small volume correction for the main effects
of the above reported conjunction (pFWE , .026)
(panel A). Model-free signatures were not statistically
different between groups. ROI, region of interest.
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neither in the left (relapsers vs. abstainers, p = .06; relapsers
vs. HCs, p = .32) or right VS (relapsers vs. abstainers, p = .10;
relapsers vs. HCs, p = .54) nor in the mPFC (relapsers vs.
abstainers, p = .60; relapsers vs. HCs, p = .21).
DISCUSSION

The main findings of our study are 1) a reduction in mPFC
activation during model-based behavior in relapsers and that
2) an interaction between alcohol expectancies and goal-
directed control distinguishes relapsers from abstainers and
HCs. Reductions in goal-directed behavior per se were not
significantly associated with AD or relapse. Instead, relapsers
had high alcohol expectancies in association with low goal-
directed behavior and vice versa, suggesting that the interac-
tion between alcohol expectancies and habitual drug intake
characterizes subjects with low treatment outcome.

Replicating previous studies (32,58), alcohol expectancies
were correlated with drinking motives, suggesting that high
alcohol expectancies reflect a motivation to consume alcohol.
In abstainers and HCs, high alcohol expectancies were
associated with stronger model-based control, which might
help these subjects to use alcohol within a framework of self-
determined values and goals. Conversely, relapsers with
relatively high model-based control had low alcohol expec-
tancies and may accordingly underestimate the effect of even
low doses of alcohol to achieve a certain desired state of
intoxication, whereas reductions in model-based control
might facilitate excessive alcohol intake when general alcohol
expectancies are high. Indeed, Hogarth et al. (36) observed
that acute expectation of alcohol can temporarily interfere
with goal-directed control. Our data add to this line of ar-
guments and suggest that beyond momentary effects of
alcohol expectations, a tendency to expect positive and
B

reinforcing alcohol effects is particularly dangerous when
combined with habitual or compulsive patterns of alcohol
intake (1,2). Our findings differed to some degree from a
study in cocaine and polysubstance abusers, where
decreased goal-directed control was found (6,8). Likewise,
Voon et al. (7) observed such reduction in methamphetamine
abusers but not alcohol-dependent patients, whereas a study
from our own laboratory in an independent sample suggested
that AD was related to reductions in goal-directed control (9).
Consumption of legal drugs (e.g., alcohol) is sensitive to
social traditions, including expected alcohol effects on per-
sonal well-being and social interactions. Such influences may
be particularly important for subjects with AD. We also
observed that functional correlates of model-based behavior
in the mPFC were reduced in relapsers compared to ab-
stainers and HCs, while at the behavioral level model-based
decision making differed only between these groups when
alcohol expectancies were taken into consideration. This
suggests that neural activation patterns during cognitive
tasks provide a valuable tool for predicting treatment out-
comes (59) independent of alcohol expectancies.

Two other studies have associated blunted mPFC activation
with reduced goal-directed control and flexible decision mak-
ing in AD (10,60). The mPFC plays a key role in alcohol-
associated behavior, including cue-induced craving in
animals (61,62) and humans (63,64). Further evidence for a role
of the mPFC in relapse comes from animal studies, where
drug-associated mPFC activity has been shown to provoke
relapse to diamorphine (65). In humans, relapse in AD has been
associated with enhanced cue-related activity in the mPFC
(19,20). These findings suggest that impaired mPFC function
and a potential bias toward cue-induced functional activation
in association with drug craving characterizes relapse across
substance use disorders.
iological Psychiatry - -, 2017; -:-–- www.sobp.org/journal 7
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There are several limitations that need to be addressed.
First, our sample size, although comparatively large, includes
only a limited number of abstainers (n = 21) available for im-
aging, and effect sizes for the behavioral data were only
moderate. Second, rodent studies have demonstrated a bias
toward habitual control after chronic alcohol reward (46–48).
The task here, however, used only monetary, nondrug rewards
(7–10) and no alcohol cues. To what extent habitization of
monetary outcomes captures the processes induced by
alcohol is unclear, but ethical concerns limit the use of alcohol
in detoxified subjects with AD.

Third, alcohol expectancies, although reflecting a trait rather
than a state marker of motivation (66,67), are directed at
consuming alcohol and are thus outcome oriented. In our
study, this motivational trait was associated with low model-
based control in relapsers. We do not know whether individ-
ual relapses were triggered by acute expectation of alcohol,
e.g. elicited by alcohol cues. However, acute expectation of
alcohol could not be tested as all subjects were motivated to
remain abstinent. Additional studies in individuals with low
substance use (e.g., heavy drinkers without dependence) may
help to identify the effects of acute alcohol expectations on
decision making.

Fourth, relapsers had gone through significantly more
previous detoxifications compared to abstainers, which may
contribute to neurobiological alterations associated with
further and even more excessive alcohol intake, as indicated
by animal experiments (68–70). However, model-based neu-
ral correlates in the mPFC were not associated with previous
detoxifications in the patient group (Supplement). Finally, our
study cannot disentangle preexisting conditions from
alcohol-induced changes [e.g., on dopaminergic neurotrans-
mission and its effect on goal-directed correlates (50)];
therefore, further studies employing longitudinal designs are
required.

In conclusion, decreased model-based control may predict
relapse only in patients with high alcohol expectancies. This
study further specifies the theory of goals and habits in AD and
suggests a pivotal role of alcohol expectancies, which can
easily be assessed in clinical settings. Our study showed how
the computational mechanism underlying goal-directed control
and its neurobiological correlate (reduced mPFC activation) are
associated with poor treatment outcome. The interaction be-
tween alcohol expectancies and drug taking habits points to
potential therapeutic interventions that aim to increase goal-
directed control (such as motivational interviewing) and alter
the anticipated outcomes of alcohol use.
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